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• Limitations of traditional approaches:
Typically rely on single-modality data, restricting medical decision-making.

• Technological advancements:
Enable integration of diverse data sources for a more holistic patient view.

• What is a multi-modality approach?:
Fusion and analysis of medical images, biosignals, clinical records, and 
more.

• Aim of this Speech:
To explore multi-modality methods for disease diagnosis and prognosis.

• Relevance to personalized medicine:
Allows detailed patient profiling including genetics, imaging, and clinical 
history.

• Technical challenges:
Difficulties in fusing heterogeneous multimodal data.

• Emerging solutions:
Deep learning as a powerful paradigm for multimodal data integration.

SUMMARY OF THE TALK



• Introduction to Multi-Modality Approaches in 
Medicine

• Current Multi-Modality Technologies

• Advantages and Challenges of Multi-Modality 
Approaches
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• Future Trends and Directions
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INTRODUCTION TO 
MULTI-MODALITY 
APPROACHES IN 
MEDICINE



• Integration of diverse data types:
• Medical imaging, clinical text, sensors, genomics, and 

more
• Healthcare generates heterogeneous data:

• EHR notes, radiology scans, lab results, wearable 
streams, genetic profiles

• Multimodal AI fuses data for deeper clinical insights
• Captures complementary information across modalities
• Enables:

• More accurate diagnoses
• Proactive patient monitoring
• Personalized treatment strategies

• Example: Imaging + genomics = improved cancer 
diagnosis & planning

• Mimics physician reasoning, enhanced by AI pattern 
recognition

DEFINITION AND SIGNIFICANCE OF
MULTI-MODALIT Y



Understanding Multi-Modality

Multi-modality involves integrating various methods and technologies to enhance data 
collection for informed decision-making. It involves fusing and analyzing various data 
types, including medical images, biosignals, clinical records, and other relevant 
sources.

Improving Diagnostic Accuracy

The combination of multiple modalities leads to improved accuracy in diagnoses, 
reducing the risk of errors.

For example, in Alzheimer’s disease diagnosis, relying solely on structural MRI scans 
results in 80% detection accuracy.

By also incorporating complementary modalities like audio features, speech 
transcript, genomic and clinical assessments, models have achieved over 90% 
diagnosis accuracy.

Personalizing Treatment Plans

Multi-modality allows for the personalization of treatment plans, catering to the 
unique needs of each patient.

DEFINITION AND SIGNIFICANCE OF
MULTI-MODALIT Y



• Medical scanners are producing higher resolution digital images 
across modalities like MRI, CT, and PET.

• Electronic health records now compile diverse clinical data in 
structured formats. 

• Advanced analytics methods like deep learning are capable of 
modeling complex multi-modal relationships [1].

DEFINITION AND SIGNIFICANCE OF
MULTI-MODALIT Y



Early medical diagnostics relied on isolated data types 
(e.g., physical exams, X-rays).

Technological milestones: invention of MRI (1970s), CT 
(1970s), PET scans (1980s).

Traditionally, each modality was analyzed separately, 
leading to fragmented clinical insights.

Growth of electronic health records (EHRs) enabled 
data integration.

Advances in computational power allowed fusion of 
complex modalities (images, signals, text).

Rise of machine learning and deep learning improved 
pattern recognition across modalities.

HISTORICAL BACKGROUND 
AND EVOLUTION



[2, 6]

CURRENT MULTI-
MODALITY
TECHNOLOGIES



MRI Technique

Magnetic Resonance Imaging (MRI) uses magnetic fields and radio waves 
to create detailed images of organs and tissues, providing crucial 
information for diagnosis.

CT Scanning

Computed Tomography (CT) scans combine X-ray images taken from 
different angles to produce cross-sectional views of bones and soft 
tissues, aiding in precise diagnosis.

PET Imaging

Positron Emission Tomography (PET) scans provide metabolic information 
by detecting radiation emitted from tracers injected into the body, assisting 
in the evaluation of conditions like cancer.

Imaging modalities such as X-rays, CT, MRI, ultrasound, 
and digital pathology slides provide detailed visual 
insights into anatomical structures and pathological 
conditions. These tools are essential for diagnostics, 
enabling the detection of abnormalities like tumors and 
monitoring disease progression or response to 
treatment. 

Imaging offers unique spatial and structural information 
that complements textual and genomic data, enhancing 
decision-making and supporting personalized treatment 
strategies.

IMAGING TECHNIQUES



TEXTUAL AND ELECTRONIC HEALTH RECORDS (EHR) 
DATA
• Clinical text includes doctor’s notes, radiology and 

pathology reports, discharge summaries, and other EHR 
documentation.

• Contains rich contextual information about patient history, 
symptoms, diagnoses, and treatments.

• Captures nuances not found in structured data, such as 
physician impressions and family history.

• NLP techniques extract key facts (e.g., diagnoses, 
medications) from unstructured narratives.

• In multimodal applications, textual data provides context to 
images or sensor readings (e.g., noting 
immunocompromised status for interpreting a chest X-ray).

• EHR integration improves predictive modeling; frameworks 
like COMET (2025) [7] use transfer learning from large EHR 
datasets to enhance smaller omics analyses.

• Adds clinical semantics and patient-specific background, 
enriching decision support beyond what images or signals 
alone provide.



SENSOR AND T IME-SERIES DATA

• Wearable devices and hospital monitors generate 
continuous physiological data (e.g., ECG, blood pressure, 
oxygen saturation, glucose levels, activity).

• Enable real-time monitoring and early warning systems, 
useful for remote care and chronic disease management.

• Sensor data supports telemedicine by alerting clinicians to 
patient condition changes remotely.

• In multimodal systems, sensor signals are combined with 
other data (e.g., symptoms, medications) for deeper context.

• Example: A rise in heart and respiratory rate may be 
interpreted differently when combined with recent clinical 
notes or lab results.

• Smart healthcare systems follow a data lifecycle: 
acquisition → structuring → fusion → predictive modeling.

• Sensors add the unique benefit of continuous, real-time 
monitoring, complementing traditional clinical 
measurements.



GENOMICS AND OMICS DATA

• Genomic data includes DNA sequences, genetic variants, 
gene expression, and molecular profiles (e.g., from tumor or 
germline sequencing).

• Provides insight into biological mechanisms of disease and 
drug response.

• Used to diagnose hereditary conditions, identify genetic 
risk factors, and guide targeted therapies (e.g., mutation-
specific cancer treatments).

• Decreasing sequencing costs are making genomic profiling 
more accessible in routine care.

• Integrating genomics with imaging and clinical data 
supports more precise, personalized medicine.

• Adds a molecular dimension to multimodal systems, 
enhancing individualized predictions and decisions.

• When combined with EHR and sensor data, enables 
comprehensive risk assessments and proactive 
monitoring based on genetic predispositions.



OTHER DATA MODALITIES

• Laboratory tests (e.g., blood tests, biomarkers) 
contribute structured numerical data.

• Demographics (age, sex, ethnicity) and lifestyle data 
(diet, exercise, sleep) inform overall health status.

• Environmental data (air quality, pollution, climate) 
aids in public health monitoring and identifying 
disease triggers.

• Patient-reported outcomes and surveys capture 
subjective health indicators like symptoms and 
quality of life.

• Multimodality may also include social determinants 
of health and ambient data.



SURVEY ON MULTI-MODALIT Y 
TECHNIQUES [1]

• Survey made in June 2023.

• 1260 articles reviewed (2012-2022).

• Only Q1 journals.

• Only multi-modals methods for detecting or 
predictin diseases.

• Machine learning or Deep Learning.

• Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) 
guidelines

431



SURVEY ON MULTI-MODALIT Y 
TECHNIQUES:  CATEGORIES

• Feature-level Fusion
• Separate Feature Extraction: Features are extracted individually from each modality (e.g., MRI, blood tests), 

preserving their unique characteristics.

• Fusion Strategy: Features are fused either:
• Early Fusion: After initial processing but before classification.
• Late Fusion: After complete modality-specific processing.

• Joint Representation: The goal is to create a unified feature representation that combines all modality-
specific features.

• Complementary Information: This method leverages the strengths of different modalities to improve the 
quality of the final representation.

• Use Case Example: MRI scans and blood tests are used to generate distinct feature sets, which are then 
combined for better classification performance.



• Decision-level Fusion
• Independent Decision Making: Each modality (e.g., MRI, genetics) produces its own decision or prediction 

separately.
• Combination Techniques: These individual decisions are fused using methods like:
• Voting
• Averaging
• Weighted combinations

• Example Use Case: MRI and genetics each classify a tumor as benign or malignant; their results are 
averaged for a final diagnosis.

• Goal: Enhance decision-making by leveraging diverse, independent sources of information.
• Advantages:
• Allows flexibility in using different modalities.
• No need for end-to-end joint training.

• Limitation: Does not capture interactions between modalities as feature-level fusion does.

SURVEY ON MULTI-MODALIT Y 
TECHNIQUES:  CATEGORIES



SURVEY ON MULTI-MODALIT Y TECHNIQUES:



In our study, three Main Categories of Data Types in 
Multi-Modality Approaches [1]:

Bioimaging:
Fusion of different medical imaging types.
Examples: PET + CT, PET + MRI (functional + 
anatomical images).

Biosignals:
Integration of physiological monitoring signals.
Examples: PPG (photoplethysmography), EEG 
(electroencephalography), ECG 
(electrocardiography).

Mixed:
Combination of images, signals, and structured 
clinical data.
Examples: Medical images + biosignals + 
electronic health records (EHRs).

CURRENT 
APPLICATIONS IN 
MEDICAL 
PRACTICE



CLINICAL APPLICATION/DISEASE:
COGNI T IVE IMPAIRMEN T

Multimodal AI integrates diverse data (e.g., imaging, genetics, clinical tests) to improve 
prediction and monitoring of cognitive decline in diseases like Alzheimer’s and 
Parkinson’s.

• One major application is Alzheimer’s disease diagnosis and progression prediction 
using combinations of MRI, PET, and cognitive tests.

• Deep learning models (e.g., autoencoders, polynomial networks, LSTMs) improve 
classification by learning joint representations.

• Some studies combine longitudinal data, speech, language, and EEG for early 
detection and symptom tracking.

• Explainability techniques (e.g., SHAP, attention mechanisms) enhance trust in 
multimodal predictions.

• Smartphone sensors and genomic data are being explored for Parkinson’s detection 
and risk prediction.

• Challenges:
Combining diverse modalities, dealing with symptom variability, and ensuring 
interpretability remain key obstacles.



CLINICAL APPLICATION/DISEASE:
MENTAL DISORDERS

Multimodal AI combines imaging, biosignals, genetics, and clinical data to improve 
diagnosis, stratification, and treatment prediction in conditions like depression, 
schizophrenia, and autism.

• In depression, combining EEG, eye-tracking, and physiological data improves 
diagnosis and treatment response prediction.

• Autoencoders and graph networks have enhanced classification in autism and major 
depressive disorder by capturing joint behavioral and neural features.

• Schizophrenia prediction benefits from integrating structural/functional MRI with 
genomic data to uncover key neural and genetic factors.

• IoT-based and wearable biosensor systems enable real-time monitoring of stress and 
Parkinson’s symptoms with low latency and energy efficiency.

• Challenges:
High heterogeneity of data, complex correlations, and model optimization remain key 
obstacles for robust, generalizable mental health applications.



CLINICAL APPLICATION/DISEASE:
SLEEP HEALTH

Multimodal AI integrates biosignals (EEG, EMG, EOG), clinical 
questionnaires, and wearable data to enhance sleep disorder diagnosis and 
monitoring beyond single-signal approaches.

• LSTM models and smartphone/wearable data enable near-real-time sleep 
pattern detection with better performance than actigraphy.

• Fourier decomposition and multi-biosignal fusion (EEG, EMG, EOG) 
improve sleep stage classification over EEG alone.

• Models like SleepPrintNet and low-cost sensor setups demonstrate 
enhanced accuracy and potential for continuous patient monitoring.

• Challenges:
Difficulties include extracting discriminative features across modalities, 
inter-subject variability, real-time computation limits, and modality-
specific representation learning.



CLINICAL APPLICATION/DISEASE:
CARDIAC DISEASES

Multimodal AI integrates ECG, imaging (MRI, ultrasound), EHRs, and genetics to 
enhance diagnosis, risk assessment, and treatment planning in cardiac diseases 
like heart failure and arrhythmias.

• Combining 3D MRI and ultrasound motion data with machine learning 
improved classification of dilated cardiomyopathy.

• Feature fusion and hybrid selection boosted coronary artery disease detection 
accuracy.

• Integrative systems using EHR and physiological signals predicted 
postoperative cardiac events with high performance.

• Challenges:
Key issues include fusing heterogeneous data types, generalizing across 
diverse patient populations, and managing the complex etiology of cardiac 
conditions.



CLINICAL APPLICATION/DISEASE:
COVID-19

Multimodal AI integrates clinical data, lab tests, imaging, audio, and outcomes to 
predict COVID-19 severity, track progression, and guide treatment.

• Random forest models using clinical and lab data accurately differentiate 
severe vs. non-severe cases.

• CovScanNet fused breathing sounds and chest X-rays, achieving high accuracy 
via smartphone-based screening.

• Audio (cough/breathing) and imaging fusion improved early detection, while 
knowledge graphs enhanced doctor-patient communication.

• Challenges:
Integrating diverse data types (text, audio, images), ensuring real-time 
performance, and handling multi-center data standardization and privacy are 
major hurdles.



CLINICAL APPLICATION/DISEASE:
ONCOLOGY

Multimodal AI fuses imaging, histopathology, omics, and clinical data to improve 
cancer detection, subtype classification, treatment planning, and survival 
prediction.

• Deep learning models integrating MRI, pathology, and clinical data have 
improved diagnosis and recurrence prediction in prostate, breast, and brain 
cancers.

• Multimodal methods enhance glioma segmentation, subtype classification, 
and gene mutation prediction from MRI and intraoperative data.

• Applications also include thyroid, pancreatic, liver, gastric, and cervical 
tumors using ultrasound, PET-CT, and CT combined with clinical records.

• Challenges:
Fusion of diverse modalities, handling 3D imaging in 2D models, increased 
computational demand, and integrating domain knowledge remain key 
obstacles.



CLINICAL APPLICATION/DISEASE:
OPHTHALMOLOGY

Multimodal AI integrates retinal imaging (fundus, OCT), clinical data, and text to 
improve diagnosis and management of eye diseases like macular degeneration, 
glaucoma, and retinitis pigmentosa.

• Bayesian and self-supervised models improved glaucoma detection by 
combining imaging, indicators, and clinical text while accounting for 
uncertainty.

• Deep learning with fundus and OCT images enhanced detection of choroidal 
neovascularization and prediction of visual impairment.

• Multimodal pre-training strategies improved grading accuracy across 
datasets using unlabeled retinal image pairs.

• Challenges:
Capturing interactions across modalities, managing diagnostic uncertainty, 
and exploiting unlabeled data for robust learning are key hurdles in 
ophthalmic AI.



CLINICAL APPLICATION/DISEASE:
PEDIATRIC DISORDERS

Multimodal AI combines imaging, clinical data, biosignals, and behavior to 
improve early detection, intervention planning, and monitoring of pediatric 
conditions.

• MCNNs using fetal heart rate and contractions aided fetal compromise 
prediction, highlighting the need for hybrid clinical-AI models.

• Radiograph + clinical data fusion improved diagnosis and surgery prediction 
in necrotizing enterocolitis.

• Video, audio, and physiological signals enabled accurate neonatal pain 
assessment; imaging + biomarkers enhanced Crohn’s disease activity 
prediction.

• Challenges:
Limited pediatric data, high imaging costs, privacy concerns, and lack of 
age-standardized tools hinder scalable and reliable multimodal integration.



CLINICAL APPLICATION/DISEASE:
O T H E R  S T U D I E S / M I SC E L L A N E O US  A P P L I CAT I O N S

These diverse studies apply multimodal AI to improve detection, diagnosis, 
and classification across a range of conditions using combined clinical, 
imaging, and physiological data.

• Seizure detection with EMG and accelerometry improved recognition of 
short, nonstandard events.

• Multimodal models enhanced infection screening, lung nodule and liver 
fibrosis staging, and knee osteoarthritis prediction.

• Combining CT, ultrasound, PET/CT, and clinical data improved diagnosis in 
pulmonary embolism, cervical cancer, and lymph node metastasis.

• Challenges:
Heterogeneity of conditions and modalities, limited standardized datasets, 
and integration of structured/unstructured data complicate generalization 
and deployment.



SUMMARY OF MAIN FINDINGS
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ADVANTAGES AND 
CHALLENGES OF
MULTI-MODALITY
APPROACHES



Real-World Impact Example [9]:
Breast cancer study showed improved diagnostic accuracy by combining 
mammogram + MRI
→ Accuracy increased from 93% (MRI only) to 99% (multimodal)
→ Enabled earlier treatment and improved patient outcomes

Key Benefits of Multimodal Integration:

✅ Improved diagnostic accuracy
→ Combines complementary data for better disease detection

🔍 More reliable detection
→ Captures subtleties missed by single tests

🧠 Deeper understanding of disease
→ Reveals mechanisms, stage, and heterogeneity

🧬 Supports personalized treatment
→ Enables better selection of targeted therapies

IMPROVED DIAGNOSTIC ACCURACY
AND PRECISION



🧩 Holistic patient view
→ Combines genetics, lab results, 
clinical history, and imaging
→ Understands the patient as a whole, 
not just the disease

🧠 Predictive insights for treatment
→ Identifies optimal therapy paths and 
likely treatment responses

💡 Personalized, data-driven care
→ Tailors interventions to individual 
needs for better outcomes

❤ Focus on quality of life
→ Empowers patient-centered decisions 
and improved long-term well-being

IMPROVED PAT IEN T  OUTCOMES 
AND PERSONALIZED T REAT MEN T



Technical Complexities

Multi-modality approaches often involve 
sophisticated technologies that can be difficult 
to implement and manage.

Logistical Coordination

Coordinating different modalities requires 
careful logistical planning and management to 
ensure smooth operation.

Cost Implications

The advanced technologies involved in multi-
modality approaches can lead to significant 
cost challenges for organizations.

CHALLENGUES :
TECHNICAL ,  LOGIST ICAL ,  AND 
COST-RELATED CHALLENGES



Reliable and Time-Efficient Data Fusion
• Current fusion techniques may lose important 

information
• In some cases, single modalities outperform 

multimodal models
• Limited performance gains in certain studies 

highlight the need for better fusion strategies
• High computational costs hinder real-time 

application in clinical settings

Balancing Model Complexity with Interpretability 
and Transparency
• Multimodal models tend to be complex and less 

interpretable
• Interpretability is essential for clinical adoption 

and trust
• Requires new methods to enforce transparency 

or simplify model mechanics
• Essential to design models that justify decisions 

for critical healthcare applications

CHALLENGUES



Multiscale Analysis
• Modalities capture information at different biological scales 

(e.g., molecular vs. organ-level)
• Genetics and proteomics provide fine-grained data; imaging 

reveals anatomy and function
• Integrating data with different spatial and semantic 

resolutions is complex and remains a major challenge

Data Standardization
• Variability across centers, scanners, and acquisition 

protocols can introduce bias
• Harmonization and normalization are essential before data 

fusion
• Standardization pipelines must preserve true biological 

signals while minimizing technical noise

CHALLENGUES



Technical Approaches
• Multi-view learning: Exploits complementary perspectives from different data modalities
• Adversarial training: Improves robustness and generalization across modalities
• Attention mechanisms: Enhances focus on the most relevant features across diverse inputs
• Despite advances, significant progress is still needed for effective integration of heterogeneous data
Ethical Considerations
• Patient privacy and data security must be prioritized
• Informed consent is essential for ethical data use
• Data anonymization and ethical approvals are required in all studies
• Establish robust governance frameworks and consent protocols to ensure trust and responsible 

implementation

ADDRESSING CHALLENGUES IN  MULT IMODAL HEALTHCARE
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CASE STUDIES AND 
REAL-WORLD 
APPLICATIONS



• Enhanced Disease Detection with Multimodal AI
• Multimodal models improve disease prediction.
• Review of 128 studies (2011–2021): average +6.4% accuracy vs. single-

modality models [6]
• Oncology: Radiology + pathology + genomics = better cancer detection 

and subtyping.
• Neurology: MRI/PET + clinical/genetic data enhance Alzheimer’s and 

epilepsy diagnosis.
• Forbes Tech Council [3]: Multimodal fusion gives a "clearer, more 

complete picture" for treatment planning.

• Contextualizing Imaging with Clinical Data
• Radiology models boosted by EHR context (fever, surgery history, 

immune status, etc.).
• Chest X-ray + patient data = improved pneumonia detection, fewer false 

positives.
• Ophthalmology: Retinal scans + systemic data predict cardiovascular 

risks not seen in the eye.
• Explanatory report generation

• Multi-Domain Diagnoses with Multimodal AI
• Some conditions (e.g., genetic diseases) require genomics + clinical 

data for accurate diagnosis.
• AI can detect phenotypic patterns (EHR, labs) and suggest genomic 

testing — or vice versa.
• Infectious diseases: Accurate diagnosis may need CT images + lab 

results + travel history.
• Fusing data types helps AI systems replicate specialist reasoning for 

complex cases.

MULTIMODAL APPLICATIONS IN DIAGNOSTICS



• Tumor boards use AI to integrate pathology 
slides, radiology, and molecular data.

• Models combining pathology + genomics 
improve tumor subtype and grade 
classification.

• Breast cancer: Mammography + patient risk 
factors (family history, biopsies, genetics) = 
tailored screening.

• Oncology & neurology dominate multimodal 
diagnostic research by volume.

• Multimodal data capture cancer’s 
heterogeneity, forming a rich diagnostic 
“signature”.

SUCCESS STORIES IN ONCOLOGY 
DIAGNOSTICS



• IBM Watson integrated EHR text, labs, guidelines, and later 
genomic data for cancer treatment suggestions.

• Sought to match patient data with medical literature to 
recommend therapies.

• Despite its ambition, Watson often disagreed with expert 
oncologists.

• In Convergence of evolving artificial intelligence and machine 
learning techniques in precision oncology (2025): “Failed to 
achieve high concordance with expert clinicians.”

• Key takeaway: Multimodal AI needs rigorous validation and 
close alignment with clinical workflows.

• Still, Watson showcased the potential of AI to synthesize 
diverse medical data for decision support.

EXAMPLE – IBM WATSON FOR ONCOLOGY



• Outcome Prediction (EHR + Clinical Notes)
• Combining structured clinical data (e.g., vitals, labs) with 

unstructured physician notes boosts predictive accuracy.
• 2024 study: Multimodal model for in-hospital heart failure 

mortality → AUC ~0.84.
• Textual notes added symptom severity, comorbidities, and 

illness history.
• Outperformed unimodal baselines (structured-only or text-

only) across all test sets.

• Survival & Progression Forecasting
• Oncology: Integrates pathology images, genomics, and 

clinical staging to predict 5-year survival or therapy 
response.

• The Cancer Genome Atlas (TCGA)-based models 
outperform single-modality ones [2].

• Alzheimer’s: MRI, biomarkers, cognitive scores, and APOE 
genotype improve dementia progression prediction.

• ADNI dataset is a benchmark for multimodal Alzheimer’s 
prognosis [2].

https://www.jmir.org/2024/1/e54363/

MULTIMODAL APPLICATIONS IN PROGNOSTICS



• Treatment Outcome Prediction
• Cardiology: Uses imaging (e.g., echo), sensors (e.g., ECG), and 

clinical variables post-surgery.
• Oncology: Multi-omics + EHR predict therapy efficacy and risk of 

side effects [7].
• COMET framework (2025): Pretrained on EHR, fused with omics 

data for better small-cohort predictions.
• Enables precise patient subgrouping beyond standard 

case/control.

• Remote Monitoring & Early Warning
• Multimodal early warning systems combine time-series vitals, 

labs, and nursing notes.
• ICU: Fusing monitor data + labs + bedside notes forecasts 

deterioration (e.g., septic shock).
• Traumatic brain injury: Neuroimaging + EEG + notes improved 

neurological recovery prediction.

• Population-Level/Public Health Prognostics
• Combines epidemiology, social media, environmental sensors, 

and pathogen genomics.
• COVID-19 modeling: Clinical data + mobility sensors + viral 

genome to predict outbreaks.
• Demonstrates scalability and versatility of multimodal predictive 

systems.

MULTIMODAL APPLICATIONS IN PROGNOSTICS



• Remote Monitoring & Telehealth
• Rise of wearables & IoT enables continuous out-of-hospital 

monitoring
• Platforms integrate:

• Physiological data (heart rate, temp, etc.)
• Self-reported symptoms via apps
• Medication adherence & telehealth assessments

• Example: Biofourmis Biovitals® Sentinel (COVID-19, Singapore)
• Clinical-grade biosensors + symptom app + AI analytics
• Early alerts reduced in-person checks & protected staff

• "Hospital at home" kits combine pulse oximeter, thermometer
• Multimodal fusion (sensor trends + symptoms) yields better early 

warnings

• Intensive Care & Inpatient Monitoring
• ICU patients produce high-frequency, multimodal data (ECG, labs, 

imaging)
• AI fuses vital signs + labs + notes to predict events (e.g., septic shock)
• Techniques: temporal convolution, attention models for real-time 

synthesis
• Multimodal correlation reduces false alarms (e.g., HR + BP + clinical 

notes)
• Experimental systems integrate bedside imaging (e.g., ultrasound + 

ventilator data)

MULTIMODAL APPLICATIONS IN PATIEN T MONI TORING



• Chronic Disease Management
• Diabetes: Combine Continuos Glucose Monitor, fitness tracker 

(activity/HR), dietary logs, and insulin pump data
• AI coaches detect lifestyle-related glycemic patterns

• Heart failure: Integrate implantables (defibrillators, fluid sensors) with 
daily vitals and symptom diaries
• Predictive models improve with fusion of RPM + EHR + prior labs
• Multimodal detection of decompensation (e.g., ↑ weight + ↓ steps + ↑ 

resting HR)

• Wearable + Smartphone Multimodality
• Smartphones collect:

• Accelerometer (activity, gait), microphone (voice, cough), 
touchscreen (cognition/tremor), GPS

• Used with wearables & self-reports to monitor:
• Parkinson’s (tremor + voice + med logs)
• Mental health (mood, usage patterns, speech tone, activity)

• Real-World Examples

• Apple Watch + Health app:
• Tracks HR, blood oxigen, sleep, exercise + integrates EHR via Health 

Records
• Aims to detect conditions using combined physiological + historical 

data
• Philips HealthSuite, GE platforms:

• Fuse hospital, wearable, and EHR data into cloud-based analytics 
systems

• Building the infrastructure for scalable multimodal monitoring

MULTIMODAL APPLICATIONS IN PATIENT MONITORING



CURRENT SYSTEMS AND COMERCIAL EXAMPLES

https://medgemma.org/

https://medgemma.org/
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CURRENT STATE OF
THE FIELD: WHERE
WE ARE



• Improved Model Accuracy
• Multimodal models consistently outperform single-

modality ones (notable AUC/accuracy gains).
• Enable predictions previously infeasible, e.g., long-term 

cognitive decline or treatment response.
• Enhanced Interpretability

• Models generate rich outputs: annotated reports, visual-
text links (e.g., phrase <-> radiology region).

• Aids clinical decision-making and trust in AI outputs.
• State-of-the-Art Benchmarks

• Top performance in medical VQA (image+text), 
pathology+genomics, and other complex tasks.

• Expanding Data Resources
• Large datasets:

• MIMIC-IV (ICU EHR + imaging + waveforms)
• UK Biobank (500K+ with genomics, imaging, EHR, 

lifestyle)
• ADNI, TCGA (disease-specific cohorts)

• Research Momentum
• Surge in multimodal publications and challenges (e.g., 

Nature Medicine 2022 review).
• Broad interest across academia and industry driving 

rapid advancement.

MULTIMODAL AI  IN HEALTHCARE:  PERFORMANCE & 
PROGRESS



• Early Clinical Integrations
• Radiology AI (e.g., Aidoc): Combines imaging + 

clinical data for triage.
• EHR-based Predictive Models: Flag high-risk 

patients (e.g., sepsis) using labs + notes.
• Remote Monitoring: Wearables + EHR for chronic 

disease management.
• Key Insight: Adoption occurs when AI clearly 

supports urgent clinical decisions.
• Limited Deployment in Routine Care

• Few FDA-cleared multimodal products to date [8].
• Translation Gap: Research often lacks deployment 

pathways.
• Data Silos: Imaging (PACS), notes (EHR), labs stored 

separately → hinders fusion.
• Trust & Transparency Issues: Clinicians resist black-

box models lacking clear rationale.
• Regulatory Hurdles: Complex approval for multi-

source AI vs. single-modality tools.

MULTIMODAL AI  IN CLINICAL PRACTICE:  ADOP TION & 
BARRIERS



• Data Quality & Missing Modalities
• Many patients lack complete data across all modalities 

(e.g., no MRI or genomics).
• Models must handle incomplete inputs robustly.

• Bias Across Modalities
• Imaging may underrepresent demographics; text may 

reflect clinician bias.
• Risk: Biases can compound when modalities are 

combined.
• Computational Burden

• Multimodal models require high compute (e.g., large 
images + long text + genomics).

• Deployment barriers: Many hospital IT systems lack 
needed infrastructure.

• Lack of Standardization
• Models are often custom-built, making comparisons and 

reproducibility hard.
• No consensus yet on optimal fusion strategies (early vs. 

late fusion, etc.).
• Emerging Solutions

• Community benchmarks (e.g., Multimodal Hospital 
Mortality on PhysioNet), but fragmented in methodology.

• Convergence toward transformer and graph-based 
multimodal architectures. [5]

CHALLENGES IN MULTIMODAL AI  FOR HEALTHCARE
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FUTURE TRENDS 
AND DIRECTIONS



• Trend: Rise of large pretrained models for multiple data 
types (text, images, etc.), inspired by GPT-4 and CLIP.

• Healthcare Shift: Development of Multimodal Large 
Language Models (MLLMs) trained on combined medical 
data (e.g., images + text).

• Key Applications:
• Medical VQA: Answering natural language questions 

using radiology images.
• Image-to-Report: Generating medical reports 

directly from images.
• Training Approach: Pretraining on large paired datasets 

(e.g., X-rays + reports) to learn cross-modal 
representations.

• Examples: Early models like BioViL and MedCLIP show 
strong generalization across tasks.

• Vision: Future “AI residents” — multimodal assistants that 
interpret both patient records and visuals to support 
clinicians.

• Implication: Foundation for intelligent hospital chatbots 
with access to full patient context (text + imaging).

MULT IMODAL FOUNDAT ION
MODELS AND L ARGE MODELS



• From Concatenation to Intelligence: Moving beyond 
simple feature concatenation toward dynamic fusion of 
modalities.

• Advanced Architectures:
• Cross-modal attention: Highlights relevant info in one 

modality based on cues from another (e.g., image 
focus guided by clinical notes).

• Hierarchical models: Extract modality-specific 
insights first, then combine (e.g., "enlarged heart" + 
"elevated troponin").

• Improved Reasoning & Interpretability: Mimics human 
diagnostic steps, supporting transparent, stepwise 
reasoning.

• Use of Graph Neural Networks (GNNs):
• Builds patient-specific knowledge graphs with 

diverse nodes (e.g., symptoms, genes, image findings).
• Enables flexible inference and robust handling of 

missing or evolving data.
• Future Direction: Smarter, more adaptive fusion that 

reflects the clinical context and task-specific needs.

IMPROVED DATA FUSIÓN 
TECHNIQUES



• P4 Paradigm:
Predictive, Preventive, Personalized, and Participatory 
healthcare.

• Predictive:
Combines genomics, lifestyle, and imaging to forecast 
disease risk (e.g., diabetes).

• Preventive:
Early detection through integrated monitoring (e.g., 
wearables spotting health decline).

• Personalized:
Tailored care based on individual genetic, environmental, 
and clinical profiles.

• Participatory:
Patients engage via apps/wearables; systems give direct 
feedback (e.g., nudges from smartwatch + EHR + genetics).

• Beyond Prediction:
Future focus on multimodal interventions (e.g., adaptive 
coaching driven by multiple data streams).

P4 MEDICINE:  MULTIMODAL AI  
AS A CATALYST



• Challenge: Healthcare data remains siloed across systems and modalities.
• Solution Path:

• Adoption of standards: FHIR, Fast Healthcare Interoperability Resources (clinical), DICOM, Digital Imaging and 
Communications in Medicine (imaging), etc.

• Creation of hospital data lakes: Secure, unified repositories per patient.
• Unified APIs: Enable access to EHR, imaging, and genomics together.

• Infrastructure Investments: Governments and health systems are building interoperable platforms.
• Labeling Bottleneck:

• Limited labeled multimodal data slows progress.
• Future relies on weakly or self-supervised learning to leverage unlabeled pairs (e.g., image-report or sensor-EHR 

alignments).
• Outcome: Greater scalability and performance by unlocking vast, underutilized multimodal data.

SOLVING DATA SILOS FOR SCALABLE
MULTIMODAL AI



• Challenge: Multimodal models are harder to interpret 
than single-modality ones.

• Key Strategies:
• Interpretable outputs: Highlight image regions + 

quote relevant clinical text to justify predictions.
• Causal modeling: Explicitly model cause-effect 

links (e.g., gene → image finding) for transparency.
• Building Trust:

• Robust validation across diverse settings and 
incomplete/noisy data scenarios.

• Explainability interfaces to show what influenced 
decisions.

• Regulatory Outlook:
• Future systems may be required to reveal which 

modalities drove a recommendation (e.g., image vs 
text vs genetics).

• Goal: Boost clinician confidence through transparent, 
accountable AI tools.

TRANSPARENCY, TRUST 
AND EXPLAINABILIT Y



• Risk: Multimodal systems may amplify existing biases 
(e.g., unequal data availability across groups).

• Examples:
• Imaging less available for rural or minority patients 
→ model skews toward biased sources.

• Research Priorities:
• Bias detection and mitigation strategies:

• Balance training data across subpopulations.
• Use adversarial learning to remove dependency 

on protected attributes.
• Hopeful Outlook:

• If used correctly, multiple modalities may reduce 
bias by cross-validating inconsistent or biased 
inputs.

• Key Need: Empirical validation to ensure fairness gains 
are real and not just theoretical.

BIAS AND FAIRNESS
CONSIDERAT IONS



• Workflow Fit:
• Models must align with clinical routines (e.g., alerts, dashboards, timing of 

use).
• Implementation science is key to making AI tools usable by care teams.

• Financial Barriers:
• Few current reimbursement codes for AI tools.
• Incentives may emerge as evidence grows (e.g., preventing readmissions).

• Technical Robustness:
• Systems must handle pipeline failures (e.g., missing images, delayed labs).

• User-Centered Design:
• Interfaces must deliver multimodal insights without cognitive overload.
• Human factors engineering will be essential for clinician adoption.

OPERATIONAL
AND 
INTEGRATION
CHALLENGES



• Increased Risk:
• Data fusion raises re-identification risk and 

impact of breaches.
• More modalities = more sensitive, comprehensive 

data exposed.
• Privacy-Preserving Approaches:

• Federated learning and secure multi-party 
computation allow cross-institutional training 
without centralizing data.

• Differential privacy can prevent leakage when 
publishing models.

• Security Threats:
• Adversarial attacks could target a single modality 

(e.g., tampered medical images).
• Future systems must ensure robustness across 

all modalities.
• Key Priority: Build secure, privacy-respecting 

infrastructures for safe AI deployment.

PRIVACY AND SECURITY



• Growing Data Sources:
• Beyond genomics: includes microbiome, digital 

pathology, and pedigree (family history) data.
• Digital Twins:

• Computational replicas of patients integrating 
behavior, physiology, genes, etc.

• Enables virtual simulations of treatments to predict 
optimal outcomes.

• Multimodal Virtual Health Assistants:
• Combine text/voice interaction with real-time 

health data (e.g., wearables, records).
• Support personalized coaching and chronic disease 

management outside clinics.
• Key Insight: The definition of “multimodal” will keep 

evolving as new health data streams emerge.

EMERGING MODALITIES
AND OPPORTUNITIES



Advancement in 
Medical Support
Multi-modality approaches 
signify significant 
advancements in medical 
support systems, integrating 
various technologies.

Enhanced Diagnostics

Integrating diverse data 
sources enhances diagnostics, 
leading to more accurate and 
timely medical decisions.

Improving Patient 
Outcomes
By leveraging technology, we 
can significantly improve 
patient outcomes and overall 
healthcare quality.

Future of Personalized 
Medicine
The integration of these 
approaches paves the way for 
the future of personalized 
medicine tailored to individual 
needs.

CONCLUSION
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